علوم

الكون الكمومي أو الكوانتي (1)

جواد بشارةأو حكايات الكوانتوم الغريبة

يحدثنا علم الكونيات أن الكون المرئي بدأ من "فرادة" كونية "وهذه الأخيرة كينونة كمومية أو كوانتية تطبق فيها قواني الكموم في اللامتناهي في الصغر وليس قوانين الفيزياء ما فوق الذرية أي قوانين نيوتن وآينشتاين ومعادلات الفيزياء المعاصرة وقوانين الكون الجوهرية الأربعة في اللامتناهي في الكبر. ففي عالم الفرادة ومادونها لا نمتلك سوى قوانين ميكانيك الكموم ومعادلاته الفيزيائية.

غرائب الكوانتوم أو فيزياء الكموم l’étrangeté de la physique quantique

أعداد وترجمة د. جواد بشارة

ثورة ميكانيكا الكم أو عندما يتحول اللامتناهي في الصغر إلى عالم متقطع un monde discontinu وغير متصل

بينما تبدو المادة في نظرنا صلبة وخفيفة التدفق غير المنقطع، فإن ميكانيكا الكموم، التي تمت صياغتها في القرن العشرين، تكشف على نطاق العالم اللامتناهي في الصغر، عن عالم متقطع. هناك حيث يسود فيها عدم اليقين l’incertitude وعدم التحديد واللاحتمية l’indétermination. تستخدم الخصائص لجعل الرموز السرية غير قابلة للانتهاك، والتي يمكن أن تضاعف قريبًا قوة أجهزة الكمبيوتر. هذا المقال مأخوذ من العدد الخاص رقم 191 "9 الثورات العلمية التي تغير العالم" بتاريخ أكتوبر / نوفمبر 2017. قصة ميكانيكا الكموم رواها الفيزيائي جان بيير فارابود. Jean-Pierre Pharabod

تبدو بعض الثورات العلمية مبهرة. فيزياء الكموم أو الكوانتوم، العلم الذي ينظر إلى الطبيعة على نطاق مجهري وما دون مجهري، هو عكس ذلك تمامًا. فهذه الفيزياء تبدو بطيئة، شاقة، بدأت بخطوات صغيرة في فجر القرن العشرين، أثارت هذه الفيزياء الجديدة، على مدى عقود طويلة، ألكثير من الشكوك. حتى روادها – مثل فيرنر هايزنبيرغ  Werner Heisenberg   الذي اكتشف المبدأ – مبدأ اللايقين أو عدم الدقة – أصيب بالأرق، لدرجة أنه أعتقد بأنه انتهك الفطرة السليمة وأزعج التمثيلات les représentations  التي تم تطويرها حتى ذلك الحين لحساب العالم.

1950 الكموم 1

شكل توضيحي لانشطار جسيمي في مصادم

فيرنر هايزنبرغ، الرجل المستعجل:

حصل الألماني فيرنر هايزنبرغ (1901-1976)، الشغوف بالرياضيات، على درجة الدكتوراه في الفيزياء عام 1923، بعد ثلاث سنوات فقط من دخوله جامعة ميونيخ. في العام التالي أصبح مساعداً لماكس بورن. في يونيو 1925، بعد هجوم عنيف من حمى القش de rhume des foins، ذهب هايزنبرغ للراحة في جزيرة هيليغولاند Heligoland الألمانية، حيث لم يكن هناك حبوب لقاح. وكان يعمل كالمجنون. "كانت الساعة تقترب من الثالثة صباحًا عندما ظهرت النتيجة النهائية أمامه، كما قال لاحقًا." كنت متحمسًا جدًا لدرجة أن الأمر لم يعد يتعلق بالنوم. غادرت المنزل وانتظرت شروق الشمس على الصخرة ". لقد وضع هايزنبرغ للتو أسس ميكانيكا الكموم في عشرة أيام فقط. لهذا حصل على جائزة نوبل في الفيزياء عام 1932. بعد ذلك، كرس نفسه لتطبيقات هذا المجال الجديد وانضم إلى الدنماركي نيلز بور. لكن بينما يفر الأخير من الدنمارك التي احتلها الجيش النازي، قرر هايزنبرغ البقاء في ألمانيا، حيث سيتعاون في مشروع الأسلحة الذرية. سُجن لمدة ستة أشهر بعد انتصار الحلفاء، ثم شارك في إعادة بناء الهياكل البحثية في بلاده. في عام 1957، وقع على بيان غوتنغن، الذي طلب فيه ثمانية عشر فيزيائيًا من المستشار أديناور عدم تزويد الجيش الألماني بأسلحة نووية.

في نهاية القرن التاسع عشر، الذي كان مثمرًا بشكل خاص للفيزياء، انغمس المجتمع العلمي في الأوهام، متخيلًا أنه يمكن للمرء الوصول مباشرة إلى الطبيعة واقتحامها وسبر أغوارها وفك أسرارها، بما في ذلك تفاصيلها الأكثر خصوصية. حتى أن بعض العلماء اعتبروا أن معرفة العالم على وشك الاكتمال، وهي ليست سوى قضية نسبية ومجرد"مسألة تقسيم السدس العشري "une question de sixième décimale", "، كما كان يؤكد ألبرت ميكلسون Albert Michelson عام 1894، الذي طور علم البصريات بخطوات كبيرة.

في ذلك الوقت، شكل الفيزيائيون مجتمعًا صغيرًا إلى حد ما، تحركه نقاشات حية تغذيها تبادل الرسائل والمخطوطات وتخللتها مؤتمرات مثمرة، مثل مؤتمرات سولفاي congrès Solvay الذي نظم عام 1911 في بروكسل بمبادرة رجل الصناعة إرنست سولفاي. وهي الاجتماعات التي تم اختيار المشاركين فيها بعناية: في عام 1927، كان 17 منهم، من أصل 29، من الفائزين بجائزة نوبل - أو سيكونون كذلك لاحقًا. من اجتماعات القمة تلك، نشأت خلافات أجبرت مؤسسي فيزياء اللامتناهي في الصغر وفيزياء الجسيمات الأولية على إعادة اكتشاف أنفسهم في محاولة لإقناع أقرانهم.

كان ماكس بلانك Max Planck  هو من وضع اللبنة الأولى لفيزياء الكموم في عام 1900، من خلال التفكير فيما يحدث عندما تصدر المادة ضوءًا: عندما يتم تسخين كتلة من الحديد، على سبيل المثال، تبدأ بالاحمرار، ثم تتحول إلى اللون الأزرق. نظرًا لأن اللون الأحمر أقل نشاطًا من اللون الأزرق، فهذا يعني أن موجة الضوء تحتوي على المزيد والمزيد من الطاقة. ومع ذلك، يشير بلانك إلى أن هذا لا يمكن أن يأخذ أي قيمة: يبدو أن البعض فقط مرخص لهم في الخوض في ذلك المجال، كما لو أن الطاقة لا يمكن أن تتغير باستمرار. بينما لم يدرك بلانك على الفور نطاق اكتشافه، استغل ألبرت أينشتاين ذلك لتطوير الفرضية الثورية في عام 1905 التي من شأنها أن تجعله يفوز بجائزة نوبل في عام 1921: اقترح أن الضوء في الواقع يتكون من حبيبات صغيرة، مماثلة للجسيمات عديمة الكتلة - الفوتونات. هذه تحمل كتلًا غير قابلة للتجزئة من الطاقة، التي أسماها الكميات quantas، والتي لا يمكن إصدارها أو امتصاصها إلا في قطعة واحدة. وهكذا، يتحرك الضوء فقط في قفزات نوعية، بطريقة متقطعة. سيستغرق ماكس بلانك عدة سنوات لقبول هذه الفكرة.

وسوف تتحول تلك الفكرة إلى نظرية في عام 1913 مع الدنماركي نيلز بور Niels Bohr، الذي استند على " الكمات les quantas  لتقديم تمثيل غير مسبوق للذرة. حتى ذلك الحين، كان يُعتقد أن تركيب الذرة يشبه النظام الكوكبي، يتكون من نواة مركزية محاطة بالإلكترونات تتحرك باستمرار، بسلاسة، في مدارها، مثل الكواكب حول الشمس. في نموذج بور، يمكن للإلكترونات أن تقفز من مدار إلى آخر، بشكل مفاجئ وبدون سبب، تصدر أو تمتص كمات محددة، أو كمات من الطاقة. ومع ذلك، لم يكن الأمر كذلك حتى ثمانينيات القرن الماضي لرصد هذه القفزات الكمومية بشكل مباشر.

طيف قوس قزح منقط بخطوط سوداء: نموذج بور انتصار لنظرية الكموم!:

لأول مرة، تكون الفيزياء قادرة على تفسير طيف ذرة الهيدروجين، مجموعة الألوان المنبعثة أو الممتصة بواسطة الأخير عند تسخينه: وهكذا، عندما نمرر الضوء الأبيض – طيف الأشعة هو قوس قزح - في الهيدروجين، يتم امتصاص ألوان معينة فقط، وتنقيط الطيف بخطوط سوداء. وبالمثل، عند إنشاء الضوء، تصدر ذرة الهيدروجين ألوانًا معينة فقط، والتي تتوافق مع نفس الطاقات مثل خطوط الامتصاص. بحلول عام 1924، بعد سنوات من العمل الشاق من قبل بور وزملائه الآخرين، كان النموذج الذري قادرًا على شرح خطوط الذرات - سواء كان لديها إلكترون واحد، مثل الهيدروجين، أو عدة إلكترونات. لكنه لا يزال يفشل في التنبؤ بكثافة هذه الخطوط، وعدد الفوتونات المنبعثة أو الممتصة في كل لون.

بعد عدة إقامات في كوبنهاغن ومناقشات مكثفة مع بور، قرر الفيزيائي الألماني الشاب فيرنر هايزنبرغ معالجة المشكلة تحت إشراف ماكس بورن، أستاذ الفيزياء النظرية بجامعة غوتنغن (ألمانيا). في عام 1925، طور - في غضون عشرة أيام فقط - شكليات formalismes جديدة تسمى "ميكانيكا الكموم" والتي ستكون خصائصها الرياضياتية حاسمة بالنسبة لمستقبل الفيزياء. وسرعان ما تم تحسين النموذج بدعم من ماكس بورن Max Born  وباسكوال جوردان Pascual Jordan، وهو أحد تلاميذه الذين جاءوا كتعزيزات لأفكاره وفرضياته. لكن رياضياتهم كانت مجردة أو تجريدية لدرجة أن النموذج رفض من قبل العديد من الزملاء.

في جامعة زيورخ، كان النمساوي إروين شرودنغر Erwin Schrödinger أحد المعترضين. بالنسبة له، لا فائدة من الاعتماد على هذه الرياضيات غير المفهومة حيث يمكن للمرء أيضًا وصف الجسيمات بأنها موجات، بطريقة أكثر واقعية من حبيبات هايزنبرغ الكمومية الصغيرة. في عام 1926، توصل إلى معادلة يمكن أن تمثل حالة الجسيم - كل خصائصه الفيزيائية، مثل الموقع والسرعة وما إلى ذلك. - في شكل دالة رياضياتية يسميها دالة الموجة fonction d’onde. ولقد اشتهرت المعادلة باسم معادلة شرودينغر.

إروين شرودنغر، الفيزيائي الفيلسوف:

طوال حياته، كان قلب إروين شرودنجر، المولود في النمسا عام 1887، يتأرجح بين العلوم الدقيقة والفلسفة. لدرجة أنه فكر في التخلي عن الفيزياء بعد القتال في الحرب العالمية الأولى. ولكنه في عام 1920، انضم إلى جامعة بريسلاو Breslau (فروكلاو Wroclaw الآن)، ثم جامعة زيورخ بعد ذلك بعامين. هذا هو المكان الذي سيطور فيه المعادلة التي تحمل اسمه. كوفئ عمله في عام 1933 بجائزة نوبل، تقاسمها مع البريطاني بول ديراك Paul Dirac . في عام 1935، تخيل شرودنغر مفارقة، عرفت بمفارقة قطة شرودينغر، والتي اشتهرت وظلت مشهورة بإلقاء الضوء على الطبيعة الغريبة لفيزياء الكموم، والتي تسمح للكائن أن يكون في حالة تراكب أي في عدة حالات في نفس الوقت. تتضمن التجربة (الفكرية!) قطة محبوسة في صندوق، حيث يمكن للجهاز أن يطلق السم بشكل عشوائي في أية لحظة. طالما لم ننظر من خلال النافذة، فإن القطة إما حية أو ميتة بمعنى الفيزياء الكلاسيكية، لكنها حية وميتة في نفس الوقت بمعنى فيزياء الكموم! في عام 1938، عارض النازية، وإثر موقفه هذا غادر شرودنغر إلى أيرلندا. بعد ست سنوات، نشر كتابه ما هي الحياة؟ وهي تجربة اقترح فيها تخزين المعلومات الجينية في جزيئات. وقد ألهم هذا الكتاب كل من جيمس واتسون James Watson  وفرانسيس كريك Francis Crick، مكتشفي بنية الحمض النووي.

إنها ولادة ميكانيكا الموجة أو الميكانيك الموجي la mécanique ondulatoire. ثم يوضح شرودنغر أن معادلته، مثل معادلة هايزنبرغ، تشرح خطوط طيف الهيدروجين. بعد قراءة مخطوطته، كتب له أينشتاين أن عمله "يحمل علامة العبقرية الحقيقية". لكن انتصار شرودنغر لم يدم طويلا! لأن ماكس بورن لا ينوي الاستسلام. تمسك بمعادلة شرودنغر - الذي كان يأمل أن تكون دالة الموجة كمومية يمكن الوصول إليها بشكل مباشر وتكون قابلة للقياس - ويوضح أن هذه الدالة تتوافق مع الاحتمال: لم يعد الأمر يتعلق بالقول إن الجسيم تجده هنا أو هناك، ولكن لديه احتمالية معينة لوجوده هنا أو هناك، وحتى أنه ... هنا وهناك في نفس الوقت!

ينقسم مجتمع الفيزيائيين إلى معسكرين:

إن هذا التفسير المسمى بالاحتمالي - وبعبارة أخرى، من حيث الاحتمالات - لفيزياء الكموم سوف يؤجج النار. إنه في الواقع يتعارض بشكل مباشر مع الحتمية déterminisme، وهو مبدأ علمي وفلسفي يعتبر حتى ذلك الحين غير ملموس يمكن بموجبه وصف أي تعاقب للأحداث على وجه اليقين على أساس الماضي وقوانين الفيزياء. ينقسم مجتمع علماء الفيزياء الآن إلى معسكرين يبدو أنهما لا يمكن التوفيق بينهما. من ناحية أخرى، المدافعون عن الحتمية، مثل شرودنغر وأينشتاين أو بلانك. من ناحية أخرى، مؤيدو التفسير الاحتمالي لفيزياء الكموم، مثل هايزنبيرغ Heisenberg، بورن Born، جوردان Jordan، بور Bohr والبريطاني الشاب بول ديراك Paul Dirac، الذي اقترح للتو إعادة كتابة أكثر تجريدًا لأفكار هايزنبيرغ Heisenberg.

بول ديراك Paul Dirac، العبقري الخفي:

كان البريطاني بول ديراك (1902-1984) ليس ثرثاراً وشحيحًا جدًا في كلامه لدرجة أن زملائه في كامبريدج ابتكروا وحدة ديراك،: كلمة واحدة في الساعة! ومع ذلك، لم يساهم أحد غيره اكثر منه في فيزياء الكموم، ولا تزال شكلياته مستخدمة حتى اليوم. في عام 1923، التحق بالجامعة الإنجليزية الشهيرة، حيث طور شغفه بالنسبية العامة وعلم الفلك. لكنه سرعان ما اكتشف مقالة عن ميكانيكا الكموم والتي من شأنها أن تجعل من هايزنبرغ مشهوراً، وانغمس في هذه الفيزياء الجديدة. كان الأعزب الراسخ، بول ديراك مدمن عمل يكرس أيام الأحد للتفكير، أثناء المشي الانفرادي الطويل. بعد التفكير بأطروحته، التحق بــ  بور في كوبنهاغن، ثم استقر عام 1927 جنبًا إلى جنب مع هايزنبرغ في غوتنغن. في عام 1928، اقترح معادلة تنبأت، من بين أمور أخرى، بوجود المادة المضادة، وعلى وجه الخصوص مضاد الإلكترون البوزيترون positron - وهو جسيم ذو كتلة مماثلة للإلكترون، ولكنه ذو شحنة كهربائية معاكسة - والذي سيتم تأكيد حقيقته بعد أربع سنوات أخرى. تم تعيينه في عام 1932، على كرسي الرياضيات في كامبريدج، وسيحقق أقصى استفادة من حياته المهنية هناك. شارك شرودنغر في جائزة نوبل في الفيزياء لعام 1933.

في عام 1927، وجه الضربة النهائية للحتمية بمبدأ اللاحتمية le principe d’indétermination. أزواج معينة من المعلمات المعايير أو الإعدادات paramètres التي تصف الجسيم - على سبيل المثال، بالنسبة لجسم ثقيل، موقعه وسرعته (أو بشكل أكثر تحديدًا ناتج كتلته من خلال سرعته) - مرتبطة بعلاقة عدم يقين؛ إذا وجدنا طريقة لتحديد موقع الإلكترون بدقة كاملة، فلا توجد طريقة لمعرفة سرعته بدقة في نفس الوقت. وبالمثل، فإن الرادار القادر على قياس سرعة الإلكترون بشكل مثالي سيكون عديم الفائدة تمامًا لأننا لن نعرف كيفية توجيهه، دون أن يكون لدينا أدنى فكرة عن موقع هدفه! في ذلك العام، في مؤتمر سولفاي، اشتبك الجانبان مرة أخرى ونشبت سجالات شهيرة بين بور وآينشتاين. يصرخ آينشتاين، الذي يعارض التفسير الاحتمالي لفيزياء الكموم بجملته الشهيرة: "الله لا يلعب النرد!" والتي رد عليها نيلز بور: "من أنت، يا ألبرت أينشتاين، لتقول لله ماذا يفعل؟"

يدحض بور تجارب أينشتاين الفكرية واحدة تلو الأخرى:

على مر السنين، ستهدأ المناقشات في نهاية المطاف. كان "حكماء" كل معسكر، وبشكل خاص بور وألبرت أينشتاين، متعارضين ومختلفين فيما بينهم. الأول يدافع عن تكامل أفكار هايزنبيرغ Heisenberg وشرودنغر Schrödinger بينما يعتقد الثاني أنه سيكون من الضروري تجميع الاثنين. يواصل أينشتاين الخروج بتجارب فكرية لإثبات أنه على حق. بينما قام بور بدحضها بصبر واحدة تلو الأخرى، حتى عام 1935 عندما وجه أينشتاين ضربة كان يعتقد أنها قاتلة لأفكار خصومه، في مقال وقع عليه بالاشتراك مع معاونيه، الفيزيائيين الأمريكيين بوريس بودولسكي Boris Podolsky وناثان روزين Nathan Rosen. يصف "ثلاثي EPR" مبدأ التجربة التي تتضمن جسيمين - على سبيل المثال فوتونان - قد تفاعلا في البداية قبل الابتعاد في اتجاهين متعاكسين. بالنسبة لشرودنغر، فإن هذه الجسيمات ستتابع إلى الأبد تفاعلها السابق، بغض النظر عن بعدها عن بعضها والمسافة التي تفصل بينها. يقول إنهم متشابكون ــ التشابك الكمومي ــ، وسيكونون دائمًا قادرين على التفاعل على الفور. على العكس من ذلك، بالنسبة لثلاثي EPR، فإن أي إجراء فوري يكون بالضرورة محليًا. بمعنى آخر، يختفي التأثير المتبادل بين جسيمين عندما يتحركان بعيدًا. وإلا فإن ذلك يعني أنه يمكنهما "التواصل" على الفور، وبالتالي يكون الاتصال بينهما أسرع من الضوء: وهذا مستحيل! لأنه لا شيء أسرع من الضوء.

استنتج آينشتاين وبودولسكي وروزين من ذلك أن نظرية الكموم غير قادرة على احترام مبدأ المحلية، وبالتالي فهي غير مكتملة، وأنه يجب استبدالها بشيء آخر. سوف يمر ما يقرب من خمسين عامًا قبل أن تثبت تجربة حاسمة خطأهم.

في عام 1982، أجرى الفرنسي آلان أسبكت Alain Aspect  واثنان من زملائه من كلية العلوم في أورساي تجربة باستخدام أزواج من الفوتونات المتشابكة المنبعثة من نفس الذرة ولكن في اتجاهين متعاكسين. على كل جانب، يتم تثبيت كاشف لقياس حالة الاستقطاب للفوتونات الواردة، بتعبير آخر الطريقة التي يهتزون بها. الإحصائيات التي تم الحصول عليها أثناء التجربة لا جدال فيها: الفوتونات التي تصل إلى الكاشفين في نفس الوقت لها نفس الاستقطاب دائمًا. تم الحفاظ على التشابك! ومع ذلك، يفصل بين الكاشفين ثلاثة عشر مترًا، وهي مسافة أكبر من أن تتمكن الفوتونات من تبادل "إشارة" تنتقل بسرعة أسرع من سرعة الضوء. يوضح آلان أسبكت أن الثلاثي EPR كان خاطئًا: فيزياء الكموم ليست محلية، إنها غير محلية. تم التأكيد عدة مرات منذ ذلك الحين على أن تجربة آسبكت ستكون نقطة البداية لنظام جديد غني بالتطبيقات والآمال الملموسة: نظرية المعلومات الكمومية، التي تثير الحماس الحقيقي وتجذب جماهير كبيرة. وحصلت على الدعم، وخاصة التمويلات العسكرية.

من أجل بضع مئات من الكيوبتات: Pour quelques centaines de qubits

وهكذا، منذ عام 1991، وبفضل عمل أنجلو بول و أرثر إكيرت Anglo-Pole Artur Ekert، تعلمنا استخدام تشابك فوتونين لنقل الرموز السرية بعيدًا عن آذان المتطفلين : تؤدي أية محاولة للاستماع أو الرصد إلى تدمير تشابك الفوتونات المستخدمة لتبادل الشفرة بين اثنين من المحاورين، وبالتالي يتم تحذيرهما على الفور من أنه قد تم التجسس عليهما. كان التقدم سريعًا، لدرجة جعل هذه التقنية قابلة للاستخدام بطريقة ملموسة: من 13 مترًا من تجربة Aspect، ذهبنا إلى 400 متر في عام 1997 مع النمساوي أنطون زيلينجر Anton Zeilinger، ثم 10 كيلومترات للسويس نيكولاس جيزن Gisin في عام 1998. منذ عام 2017، الرقم القياسي هو 1400 كيلومتر. التطبيق الرائع الآخر للتشابك، الحوسبة الكمومية، لا يزال في طي النسيان. إنه يقوم على أساس قدرتنا على عزل ومعالجة الجسيمات الكمومية واحدة تلو الأخرى. ومن ناحية أخرى، ما يسمى النقل الآني الكمومي la téléportation quantique، وهي طريقة تسمح لخاصية مادية أن تنتقل من جسيم إلى آخر، على سبيل المثال اتجاه دورانه على نفسه، بفضل التشابك. جعلت هذه التطورات من الممكن إنشاء أول كيوبتات. هذه هي المعادلات الكمومية للبايت، المعلومات الأولية التي تتلاعب بها أجهزة الكمبيوتر الخاصة بنا. ولكن في حين أن البايتة يمكن أن تأخذ قيمة واحدة فقط، 0 أو 1، يمكن للكيوبايت أن يأخذ أكثر من قيمة واحدة في كل مرة. يأمل الباحثون في أن يتمكنوا من تجميعها يومًا ما لصنع أجهزة كمبيوتر كمومية قوية. لن يتطلب الأمر سوى بضع مئات من الكيوبتات - على الورق - لصنع آلة كومبيوتر قوية مثل جميع أجهزة الكمبيوتر لدينا مجتمعة!

عندما ينقل الصينيون مفاتيح الكموم الصينية آنياً فضائياً:

سعى البشر إلى التواصل بعيدًا عن آذان المتطفلين لثلاثة آلاف عام على الأقل. ينشغل علماء الرياضيات في مجالين - يحمي المشفرون الرسائل ويحاول محللو التشفير "كسرها" - لكن تبادل الرموز والمفاتيح السرية لم يتم حله بعد. كيف يمكنك التأكد من عدم تجسس أي شخص في اللحظة التي يتم فيها إرسال رمز بين طرفين؟ توفر فيزياء الكموم إجابة، لأن أي ملاحظة لحالة الجسيم، على سبيل المثال الطريقة التي يهتز بها (الاستقطاب)، تدمر هذه الحالة. لذلك لا يمكن أبدًا اعتراض الشفرة السرية التي يتم نشرها من خلال التشابك الكمي. بعد ذلك، لا شيء يمنعك من استخدام أي قناة، مثل الإنترنت، لتبادل المعلومات المشفرة باستخدام الرمز. أخبرنا السويسري نيكولاس جيزين، أحد نجوم هذا التخصص، "من المؤكد جدًا، على المستوى النظري، أنه يمكنك حتى الحصول على جهازك لتوزيع المفتاح الكمي من أسوأ أعدائك".  ونيكولاس جيزين هو الذي أنشأ أو أسس شركة رائدة في الصناعة هي، ID Quantique.

لقد أدركت الصين قيمة هذه الاتصالات السرية للغاية. في تشرين الثاني (نوفمبر) 2019، بناءً على التقدم الذي أحرزه باحثوها، ولا سيما جيان ويل بان Jian-Wei Pan، التي تدربت في النمسا عند أنطون زيلنجر Anton Zeilinger، أحد أفضل المتخصصين في هذا القطاع، قامت بتكليف الفروع الأولية لشبكة إنترنت محمية بالتوزيع كم من مفاتيح التشفير. الأول في العالم! وباتت تتوسع بسرعة منذ العام الماضي، وضعت بكين قمرًا صناعيًا مخصصًا لهذا الوضع المحمي جيدًا من الاتصالات في المدار. كانت النتائج أكثر من مشجعة: أكملت المركبة للتو بنجاح أول تجربة تبادل مفتاح كمومي، بالإضافة إلى أول انتقال كمومي عن بعد، على مسافة تزيد عن 1400 كيلومتر بين الفضاء والأرض.

علاوة على ذلك، تجدر الإشارة إلى أن هذه، مثل العديد من الأدوات في مجتمعنا، لم تكن ممكنة إلا بفضل إصرار ومثابرة آباء ميكانيكا الكموم. من هذه الفيزياء الغريبة، التي لم تنتهِ من مفاجأتنا، ظهرت، من بين أمور أخرى، أشعة الليزر الخاصة باتصالاتنا، وأشباه الموصلات لشرائحنا الإلكترونية وخلايانا الشمسية، ولكن أيضًا مغناطيسات فائقة التوصيل من أجهزة التصوير بالرنين المغناطيسي (MRI) IRM، والتي تقوم بفحص أدمغتنا.

المصطلحات LEXIQUE

دالة الموجة Fonction d’onde: هي أداة رياضية تمثل حالة جسيم المادة أو الضوء، مع الأخذ في الاعتبار الموجة المرتبطة بها.

الشكلية Formalisme: مجموعة من الأدوات والتعاريف المستخدمة لوصف موضوع الدراسة.

ظاهرة التشابك Intrication : حيث يحتفظ جسمان متشابكان بنفس الخصائص الكمومية بغض النظر عن المسافة بينهما.

المحلية Localité: المبدأ الذي وفقًا له لا يمكن أن يكون لكائنان بعيدان تأثير مباشر على بعضهما البعض. تتحدى فيزياء الكموم.

كمية الطاقة Quantum d’énergie : كمية غير قابلة للتجزئة من الطاقة تميز جميع عمليات تبادل الطاقة على النطاق الكمي، على سبيل المثال انبعاث الضوء بواسطة الذرات.

مبدأ اللاحتمية: Principe d’indétermination يشير إلى أنه لا يمكن قياس الموضع ومقدار الحركة بدقة.

النقل الآني الكمومي Téléportation quantique طريقة قائمة على التشابك تنقل على الفور حالة كائن كمي دون نقل الكائن نفسه. نتحدث عن النقل الآني لأن الجسم الكمي يرى حالته مدمرة بالعملية.

 

في المثقف اليوم